Розділи

загрузка...
РОЗДІЛ 11. ТЕОРІЯ ІГОР; 11.1. Основні поняття теорії ігор; Математичне програмування - Наконечний С.І.

РОЗДІЛ 11. ТЕОРІЯ ІГОР

«…Гра — не філософія і не релігія, це особлива дисципліна, за своїм характером вона найближча до мистецтва..»

Г. Гессе «Гра в бісер»

Теорія ігор вперше була систематично викладена Нейманом і Моргенштерном та оприлюднена лише 1944 року в монографії «Теорія ігор і економічної поведінки», хоча окремі результати були опубліковані ще в 20-х роках. Нейман і Моргенштерн написали оригінальну книгу, яка містила переважно економічні приклади, оскільки економічні задачі простіше за інші описати за допомогою чисел. Під час другої світової війни і одразу після неї теорією ігор серйозно зацікавились військові, які одразу побачили в ній математичний апарат для дослідження стратегічних проблем і підготовки рішень. Потім головна увага знову була звернута до економічних проблем. Нині сфера застосування теорії ігор значно розширилась. Так, у соціальних науках апарат теорії ігор застосовується у психології для аналізу торгових угод та переговорів, а також для вивчення принципів формування коаліцій тощо.

11.1. Основні поняття теорії ігор

У попередніх розділах описані такі задачі математичного програмування, де рішення на основі розрахованого оптимального плану приймає лише один суб’єкт, що має чітко визначену мету. Відомо, що будь-яка економічна система не функціонує ізольовано, а на певних етапах своєї діяльності вступає в різні економічні відносини з іншими суб’єктами господарювання. Оптимальний план за наведеними вище математичними моделями визначався, виходячи з інтересів тільки однієї сторони економічних відносин, не враховуючи можливі варіанти дій інших сторін.

У даному розділі розглядаються ситуації з кількома учасниками, коли значення цільової функції для кожного учасника залежить не лише від його власної поведінки, але і від дій інших суб’єктів.

За умов ринкової економіки все частіше мають місце конфліктні ситуації, коли два або більше колективів (індивідуумів) мають протилежні цілі та інтереси, причому результат дії кожної із сторін залежить і від дії супротивника. Класичним прикладом конфліктної ситуації в економіці є відношення продавець — покупець (монополія — монопсонія). Складніші ситуації виникають, коли в суперечці інтересів беруть участь об’єднання чи коаліції.

Зазначимо, що не завжди учасники ігрової ситуації мають протилежні цілі. Наприклад, дві фірми, які надають однакові послуги, можуть об’єднуватися з метою спільного протистояння більшому супернику.

Часто однією із сторін конфлікту є природні процеси чи явища, наприклад, погода, тобто маємо гру людини з природою. Погодними умовами людина практично не може керувати, але вона має змогу пристосовуватися до її постійних змін. Безліч подібних ситуацій можна зустріти і в інших сферах людської діяльності: біології, психології, політології тощо.

Теорія ігор — це математичний апарат, що розглядає конфліктні ситуації, а також ситуації спільних дій кількох учасників. Завдання теорії ігор полягає у розробленні рекомендацій щодо раціональної поведінки учасників гри.

Реальні конфліктні ситуації досить складні і обтяжені великою кількістю несуттєвих чинників, що ускладнює їх аналіз, тому на практиці будують спрощені моделі конфліктних ситуацій, які називають іграми.

Характерними рисами математичної моделі ігрової ситуації є наявність, по-перше, кількох учасників, яких називають гравцями, по-друге, опису можливих дій кожної із сторін, що називаються стратегіями, по-третє, визначених результатів дій для кожного гравця, що подаються функціями виграшу. Задачею кожного гравця є знаходження оптимальної стратегії, яка за умови багатократного повторення гри забезпечує даному гравцю максимально можливий середній виграш.

Існує дуже багато різних ігор. Прикладом «гри» в буквальному розумінні цього слова, передусім, є спортивна, карточна гра, шахи тощо. Від реальної конфліктної ситуації гра відрізняється не лише спрощеною формою, а також наявністю певних правил, за якими мають діяти її учасники. Дослідження таких формалізованих ігор звичайно не може дати чітких рекомендацій для реальних умов, проте є найзручнішим об’єктом для вивчення конфліктних ситуацій і оцінки можливих рішень з різних поглядів. Розраховані на основі ігрових моделей оптимальні плани не визначають єдино правильне рішення за складних реальних умов, проте слугують математично обґрунтованою підставою для прийняття таких рішень.