Розділи

загрузка...
10.3. Приклади економічних задач стохастичного програмування; Математичне програмування - Наконечний С.І.

10.3. Приклади економічних задач стохастичного програмування

Нехай потрібно зробити запас з n товарів у обсягах , на які є випадковий попит . За нестачі одиниці j-го товару застосовується штрафна санкція у розмірі , тобто , а затрати на зберігання одиниці відповідної продукції, яку не вдалося збути, задаються вектором

Розв’язання. Функція збитків, що відповідає розв’язку Х, має вигляд:

де — штраф за незадоволення попиту по j-му виду продукції; — витрати на зберігання j-ої продукції. Для знаходження оптимального розв’язку цієї задачі необхідно мати функцію розподілу ймовірностей випадкової величини ω. Якщо така функція розподілу невідома, тобто її неможливо відшукати, то допускають, що випадкова величина розподілена рівномірно. В такому разі необхідно пам’ятати, що саме таке припущення може призвести до прийняття неправильного рішення.

Індивіди можуть тримати своє багатство у вигляді грошей та облігацій. Оскільки гроші — це актив, що використовується як засіб обігу, то вони не приносять прибутку у вигляді процентів. Облігації — це цінні папери, що дають їх власникові певний дохід. Логічно допустити, що індивідууми мають зберігати своє багатство у вигляді облігацій. Однак це не так, оскільки процентна ставка і ринкова вартість облігацій наперед точно не відомі , тобто існує невизначеність. Необхідно визначити оптимальний розподіл активу на гроші та облігації.

Розв’язання. Нехай S — загальна величина активу, а х та y — величини активів, які зберігаються відповідно у формі грошей та облігацій. Вважаємо, що через рік активи, вкладені в облігації, змінюються. За решти однакових умов облігацію, яка приносить більший процент прибутку, на ринках цінних паперів можна продати за більшу суму, ніж облігацію з меншим процентом. Позначимо через ξта η величини активів, які реалізуються через рік на одиницю активів, відповідно збережених у формі грошей та вкладених в облігації. Величина , а η є випадковою величиною. Економіко-математична задача найвигіднішого розподілу активу на гроші та облігації полягає у максимізації сподіваної корисності:

,

за умов:

;

.

Звідси випливає, що, коли , то активи потрібно вкладати в облігації, а в протилежному разі — навпаки. Отже, питання щодо розподілу активу між грішми та облігаціями повністю вирішується на користь одного з цих видів заощаджень. Якщо , то однаково, який спосіб заощадження буде використано.

Відомо, що у комерційних банках нараховується більша процентна ставка на вкладені кошти порівняно з ощадним, але повернення внеску не гарантується. Перед кожним вкладником постає дилема: мати менший, але гарантований дохід, або більший, проте з ризиком втратити внесок. З ризиком невикористаних можливостей пов’язаний внесок в ощадний банк. Визначити оптимальний розподіл вкладень у банки.

Розв’язання. Позначимо через S загальну суму грошей певного власника; x— обсяг вкладень в ощадний банк, y— у комерційний; a, b— відповідно процентні ставки нарахувань в ощадному та комерційному банках; p — ймовірність повернення вкладу з комерційного банку; — ймовірність ліквідації (банкрутства) комерційного банку.

За певного розподілу S на x і y можливі такі дві ситуації щодо отримання доходів:

— за умов успішного функціонування комерційного банку;

— у протилежному разі.

Економіко-математична модель має такий вигляд:

за умов:

;

Потрібно оцінити доцільність страхування. Нехай якась особа бажає застрахувати частину свого активу. Для цього вона сплачує певний внесок страховій компанії, а у разі втрати активу одержує від неї страхову винагороду. Визначити частку активу, яку особа вважає за доцільне застрахувати.

Розв’язання. Позначимо через S актив (капітал, майно тощо), власником якого є певна особа. Частину його, яку бажано застрахувати, позначимо через x. Тоді страховий внесок, що сплачується страховій компанії, дорівнює rx, а у разі втрати активу клієнт одержує винагороду qx. Якщо відома ймовірність p недоторканності всього активу, то економіко-математичну модель визначення частки страхового активу можна записати так:

,

.

Тут можна легко врахувати також обсяги доходів.

Подібна модель може використовуватися страховими компаніями для визначення доцільних величин страхових внесків та страхових винагород, які зацікавили б клієнтів і були б вигідними страховій компанії.

У буряко-цукровому комплексі мають суму коштів S, які необхідно розподілити між розширенням сировинної бази і збільшенням потужностей з її переробки. Потрібно так спланувати розподіл коштів, вважаючи урожайність цукрових буряків випадковою величиною ξ, щоб отримати найбільшу кількість цукру.

Розв’язання. Нехай q1 — витрати коштів на вирощування цукрових буряків на одному гектарі; q2 — питомі зведені витрати на створення одиниці потужності цукрового заводу; d — частка виходу цукру з одиниці сировини; x — планова площа під цукровими буряками; y — планова потужність цукрового заводу.

Потрібно максимізувати приріст обсягу виробництва цукру за обмежених коштів. Економіко-математична модель має вигляд:

за умов:

;