Розділи

загрузка...
8.2. Геометрична інтерпретація задачі нелінійного програмування; Математичне програмування - Наконечний С.І.

8.2. Геометрична інтерпретація задачі нелінійного програмування

Геометрично цільова функція (8.1) визначає деяку поверхню, а обмеження (8.2)—(8.3) — допустиму підмножину n-вимірного евклідового простору. Знаходження оптимального розв’язку задачі нелінійного програмування зводиться до відшукання точки з допустимої підмножини, в якій досягається поверхня найвищого (найнижчого) рівня.

Якщо цільова функція неперервна, а допустима множина розв’язків замкнена, непуста і обмежена, то глобальний максимум (мінімум) задачі існує.

Найпростішими для розв’язування є задачі нелінійного програмування, що містять систему лінійних обмежень та нелінійну цільову функцію. В цьому разі область допустимих розв’язків є опуклою, непустою, замкненою, тобто обмеженою.

Розглянемо приклад геометричного способу розв’язування задачі нелінійного програмування.

Знайти мінімальне і максимальне значення функції:

за умов:

.

Подпись: Рис. 8.1 Розв’язання. Область допустимих розв’язків утворює чотирикутник АВСD (рис. 8.1). Геометрично цільова функція являє собою коло з центром у точці М (2; 2), квадрат радіуса якого . Це означає, що її значення буде збільшуватися (зменшуватися) зі збільшенням (зменшенням) радіуса кола. Проведемо з точки М кола різних радіусів. Функція Z має два локальних максимуми: точки В (0; 6) і С (8; 0). Обчислимо значення функціонала в цих точках:

,

.

Оскільки , то точка С (8; 0) є точкою глобального максимуму.

Очевидно, що найменший радіус , тоді:

. Тобто точка М є точкою мінімуму, оскільки їй відповідає найменше можливе значення цільової функції.

Зазначимо, що в даному разі точка, яка відповідає оптимальному плану задачі (мінімальному значенню функціонала), знаходиться всередині багатокутника допустимих розв’язків, що в задачах лінійного програмування неможливо.

Знайти мінімальне значення функції:

за умов:

.

Розв’язування. У даному прикладі множина допустимих розв’язків складається з двох окремих частин, необмежених зверху (рис. 8.2). Цільова функція аналогічно попередньому випадку є колом з центром у точці М (4; 4). Функція Z має два локальних мінімуми: в точці А (), і в точці В ().

Подпись: Рис. 8.2. Значення функціонала в цих точках однакове і дорівнює:

.

Отже, маємо два альтернативні оптимальні плани.

Даний приклад ілюструє ще одну особливість задач нелінійного програмування: на відміну від задач лінійного програмування багатогранник допустимих розв’язків задачі нелінійного програмування не обов’язково буде опуклою множиною.

Наведемо основні особливості задач нелінійного програмування, що зумовлюють необхідність застосування відповідних методів їх розв’язання.